check Adds

Saturday, October 9, 2010

Computer Networking

Computer Network
A computer network is a group of computers that are connected to each other for the purpose of communication. Computer networking is the engineering discipline concerned with communication between computer systems or devices. Networking, routers, routing protocols, and networking over the public Internet have their specifications defined in documents called RFCs (Request for Comment).
A computer network allows sharing of resources and information among devices connected to the network. The Advanced Research Projects Agency (ARPA) funded the design of the “Advanced Research Projects Agency Network” (ARPANET) for the United States Department of Defense. It was the first operational computer network in the world. Development of the network began in 1969, based on designs developed during the 1960s. For a history see ARPANET, the first network. Computer networking is sometimes considered a sub-discipline of telecommunications, computer science, information technology and/or computer engineering. Computer networks rely heavily upon the theoretical and practical application of these scientific and engineering disciplines.
Types of Computer Networks
The most common types of Computer Networks are:
• LAN
• MAN
• WAN



Local Area Network is usually a small network constrained to a small geographic area. An example of a LAN would be a computer network within a building.

LAN (Local Area Network)


LAN Design
Ethernet
When we talk about a LAN, Ethernet is the most popular physical layer LAN technology today. Its standard is
Local Area Network
Local Area Network
defined by the Institute for Electrical and Electronic Engineers as IEEE Standard 802.3, but was originally created by Digital Intel Xerox (DIX). According to IEEE, information for configuring an Ethernet as well as specifying how elements in an Ethernet network interact with one another is clearly defined in 802.3.

For half-duplex Ethernet 10BaseT topologies, data transmissions occur in one direction at a time, leading to frequent collisions and data retransmission. In contrast, full-duplex devices use separate circuits for transmitting and receiving data and as a result, collisions are largely avoided. A collision is when two nodes are trying to send data at the same time. On an Ethernet network, the node will stop sending when it detects a collision, and will wait for a random amount of time before attempting to resend, known as a jam signal. Also, with full-duplex transmissions the available bandwidth is effectively doubled, as we are using both directions simultaneously. You MUST remember: to enjoy full-duplex transmission, we need a switch port, not a hub, and NICs that are capable of handling full duplex. Ethernets media access control method is called Carrier sense multiple access/ collision dectect (CSMA/CD). Because of Ethernets collision habits it is also known as the best effort delivery system. Ethernet cannot carry data over 1518 bytes, anything over that is broken down into. Travel size packets.
Fast Ethernet
For networks that need higher transmission speeds, there is the Fast Ethernet standard called IEEE 802.3u that raises the Ethernet speed limit to 100 Mbps! Of course, we need new cabling to support this high speed. In 10BaseT network we use Cat3 cable, but in 100BaseT network we need Cat 5 cables. The three types of Fast Ethernet standards are 100BASE-TX for use with level 5 UTP cable, 100BASE-FX for use with fiber-optic cable, and 100BASE-T4 which utilizes an extra two wires for use with level 3 UTP cable.
Gigabit Ethernet
Gigabit Ethernet is an emerging technology that will provide transmission speeds of 1000mbps. It is defined by the IEEE standard The 1000BASE-X (IEEE 802.3z). Just like all other 802.3 transmission types, it uses Ethernet frame format, full-duplex and media access control technology.
Token Ring
Token Ring is an older standard that isn’t very widely used anymore as most have migrated to some form of Ethernet or other advanced technology. Ring topologies can have transmission rates of either 4 or 16mbps. Token passing is the access method used by token ring networks, whereby, a 3bit packet called a token is passed around the network. A computer that wishes to transmit must wait until it can take control of the token, allowing only one computer to transmit at a time. This method of communication aims to prevent collisions. Token Ring networks use multistation access units (MSAUs) instead of hubs on an Ethernet network.

MAN (Metropolitan Area Network)

A metropolitan area network (MAN) is a network that interconnects users with computer resources in a geographic area or region larger than that covered by even a large local area network (LAN) but smaller than the area covered by a wide area network (WAN). It might cover a
Metropolitan Area Network
Metropolitan Area Network
group of nearby corporate offices or a city and might be either private or public. A MAN can support both data and voice, and might even be related to the local cable television network. A MAN just has one or two cables and does not contain switching elements, which shunt packets over one of several potential output lines. Not having to switch simplifies the design.
In simple Language we can define MAN as
A metropolitan area network (MAN) is a network that connects two or more local area networks or campus area networks together but does not extend beyond the boundaries of the immediate town/city. Routers, switches and hubs are connected to create a metropolitan area network. Such networks are being implemented by innovative techniques, such as running optical fibre through subway tunnels. A popular example of a MAN is SMDS. The term is applied to the interconnection of networks in a city into a single larger network (which may then also offer efficient connection to a wide area network). It is also used to mean the interconnection of several local area networks by bridging them with backbone lines. The latter usage is also sometimes referred to as a campus network.
The main reason for even distinguishing MANs as a special category is that a standard has been adopted for them, and this standard is now being implemented. It is called DQDB (Distributed Queue Dual Bus) for people who prefer numbers to letters, 802.6. DQDB consists of two unidirection buses (cables) to which all the computers are connected. Each bus has a head-end, a device that initiates transmission activity. Traffic that is destined for a computer to the “right” of the sender uses the “upper” bus. Traffic to the “left” uses the “lower” one.
Examples of metropolitan area networks of various sizes can be found in the metropolitan areas of London, England; Lodz, Poland; and Geneva, Switzerland. Large universities also sometimes use the term to describe their networks. A recent trend is the installation of wireless MANs.

WAN (Wide Area Network)

The term Wide Area Network (WAN) usually refers to a network which covers a large geographical area, and use communications circuits to
Wide Area Network
Wide Area Network
connect the intermediate nodes. WANs often connect multiple smaller networks, such as local area networks (LANs) or metro area networks (MANs). The world’s most popular WAN is the Internet. Some segments of the Internet, like VPN-based extranets, are also WANs in themselves. Finally, many WANs are corporate or research networks that utilize leased lines.
Numerous WANs have been constructed, including public packet networks, large corporate networks, military networks, banking networks, stock brokerage networks, and airline reservation networks. Some WANs are very extensive, spanning the globe, but most do not provide true global coverage. Organisations supporting WANs using the Internet Protocol are known as Network Service Providers (NSPs). These form the core of the Internet.

WAN Protocols
In general, there are three broad types of WAN access technology. With Leased Lines, we have point-to-point dedicated connection that uses pre-established WAN path provided by the ISP. With Circuit Switching such as ISDN, a dedicated circuit path exist only for the duration of the call. Compare to traditional phone service, ISDN is more reliable and is faster. With Packet Switching, all network devices share a single point-to-point link to transport packets across the carrier network – this is known as virtual circuits.
When we talk about Customer premises equipment(CPE), we are referring to devices physically located at the subscriber?s location. Demarcation is the place where the CPE ends and the local loop begins. A Central Office(CO) has switching facility that provides point of presence for its service. Data Terminal Equipment(DTE) are devices where the switching application resides, and Date Circuit-terminating Equipment(DCE) are devices that convert user data from the DTE into the appropriate WAN protocol. A router is a DTE, while a DSU/CSU device or modem are often being referred to as DCEs.


• Peer to Peer - A peer to peer network is one in which lacks a dedicated server and every computer acts as both a client and a server. This is a good networking solution when there are 10 or less users that are in close proximity to each other. A peer to peer network can be a security nightmare, because the people setting permissions for shared resources will be users rather than administrators and the right people may not have access to the right resources. More importantly the wrong people may have access to the wrong resources, thus, this is only recommended in situations where security is not an issue.

Some more types of Networks

• Client/Server - This type of network is designed to support a large number of users and uses dedicated server/s to accomplish this. Clients log in to the server/s in order to run applications or obtain files. Security and permissions can be managed by 1 or more administrators which cuts down on network users medling with things that they shouldn’t be. This type of network also allows for convenient backup services, reduces network traffic and provides a host of other services that comes with the network operating system(NOS).
• Centralized - This is also a client/server based model that is most often seen in UNIX environments, but the clients are “dumb terminals”. This means that the client may not have a floppy drive, hard disk or CDROM and all applications and processing occur on the server/s. As you can imagine, this requires fast and expensive server/s. Security is very high on this type of network.
Peer to Peer Network
Peer to Peer Network

Client/Server Network
Client/Server Network

Centralized Server Network

No comments:

Post a Comment